Table of Contents

 

 

 

 

Preface

vii

 

Acknowledgements

xi

1

Introduction

1

1.1

Prognosis and Prediction in Medicine

1

1.1.1

Prediction Models and Decision-Making

1

1.2

Statistical Modelling for Prediction

2

1.2.1

Model Uncertainty

3

1.2.2

Sample Size

4

1.3

Structure of the Book

5

1.3.1

Part I: Prediction Models in Medicine

5

1.3.2

Part II: Developing Valid Prediction Models

6

1.3.3

Part III: Generalizability of Prediction Models

6

1.3.4

Part IV: Applications

7

1.3.5

Questions and Exercises

7

PART I

PREDICTION MODELS IN MEDICINE

 

2

Applications of Prediction Models

9

2.1

Applications: Medical Practice and Research

II

2.2

Prediction Models for Public Health

12

2.2.1

Targeting of Preventive Interventions

12

2.2.2

Example: Incidence of Breast Cancer

12

2.3

Prediction Models for Clinical Practice

13

2.3.1

Decision Support on Test Ordering

13

2.3.2

Example: Predicting Renal Artery Stenosis

14

2.3.3

Starting Treatment: the Treatment Threshold

15

2.3.4

Example: Probability of Deep Venous Thrombosis

16

2.3.5

Intensity of Treatment

16

2.3.6

Example: Defining a Poor Prognosis Subgroup in Cancer

18

2.3.7

Cost-Effectiveness of Treatment

18

2.3.8

Delaying Treatment

19

2.3.9

Example: Spontaneous Pregnancy Chances

19

2.3.10

Surgical Decision-Making

21

2.3.11

Example: Replacement of Risky Heart Valves

21

2.4

Prediction Models for Medical Research

23

2.4.1

Inclusion and Stratification in an RCT

23

2.4.2

Example: Selection for TBI Trials

24

2.4.3

Covariate Adjustment in an RCT

25

2.4.4

Gain in Power by Covariate Adjustment

26

2.4.5

Example: Analysis of the GUSTO-III Trial

27

2.4.6

Prediction Models and Observational Studies

27

2.4.7

Propensity Scores

28

2.4.8

Example: Statin Treatment Effects

28

2.4.9

Provider Profiling

29

2.4.10

Example: Ranking Cardiac Outcome

29

2.5

Concluding Remarks

30

3

Study Design for Prediction Models

33

3.1

Study Design

33

3.2

Cohort Studies for Prognosis

33

3.2.1

Retrospective Designs

35

3.2.2

Example: Predicting Early Mortality in Oesophageal Cancer

35

3.2.3

Prospective Designs

35

3.2.4

Example: Predicting Long-Term Mortality in Oesophageal Cancer

36

3.2.5

Registry Data

36

3.2.6

Example: Surgical Mortality in Oesophageal Cancer

37

3.2.7

Nested Case-Control Studies

37

3.2.8

Example: Perioperative Mortality in Major Vascular Surgery

38

3.3

Studies for Diagnosis

38

3.3.1

Cross-Sectional Study Design and Multivariable Modelling

38

3.3.2

Example: Diagnosing Renal Artery Stenosis

38

3.3.3

Case-Control Studies

39

3.3.4

Example: Diagnosing Acute Appendicitis

39

3.4

Predictors and Outcome

39

3.4.1

Strength of Predictors

39

3.4.2

Categories of Predictors

40

3.4.3

Costs of Predictors

40

3.4.4

Determinants of Prognosis

41

3.4.5

Prognosis in Oncology

41

3.5

Reliability of Predictors

42

3.5.1

Observer Variability

42

3.5.2

Example: Histology in Barrett’s Oesophagus

42

3.5.3

Biological Variability

43

3.5.4

Regression Dilution Bias

43

3.5.5

Example: Simulation Study on Reliability of a Binary Predictor

43

3.5.6

Choice of Predictors

44

3.6

Outcome

44

3.6.1

Types of Outcome

44

3.6.2

Survival Endpoints

45

3.6.3

Example: Relative Survival in Cancer Registries

45

3.6.4

Composite End Points

46

3.6.5

Example: Mortality and Composite End Points in Cardiology

46

3.6.6

Choice of Prognostic Outcome

46

3.6.7

Diagnostic End Points

47

3.6.8

Example: PET Scans in Oesophageal Cancer

47

3.7

Phases of Biomarker Development

47

3.8

Statistical Power

48

3.8.1

Statistical Power to Identify Predictor Effects

49

3.8.2

Examples of Statistical Power Calculations

49

3.8.3

Statistical Power for Reliable Predictions

50

3.9

Concluding Remarks

51

4

Statistical Models for Prediction

53

4.1

Continuous Outcomes

53

4.1.1

Examples of Linear Regression

54

4.1.2

Economic Outcomes

54

4.1.3

Example: Prediction of Costs

54

4.1.4

Transforming the Outcome

54

4.1.5

Performance: Explained Variation

55

4.1.6

More Flexible Approaches

55

4.2

Binary Outcomes

57

4.2.1

R2 in Logistic Regression Analysis

58

4.2.2

Calculation of R2 on the Log Likelihood Scale

58

4.2.3

Models Related to Logistic Regression

60

4.2.4

Bayes Rule

61

4.2.5

Example: Calculations with Likelihood Ratios

62

4.2.6

Prediction with Naïve Baycs

63

4.2.7

Examples of Naive Bayes

65

4.2.8

Calibration and Naive Bayes

65

4.2.9

Logistic Regression and Bayes

65

4.2.10

More Flexible Approaches to Binary Outcomes

65

4.2.11

Classification and Regression Trees

67

4.2.12

Example: Mortality in Acute MI Patients

67

4.2.13

Advantages and Disadvantages of Tree Models

67

4.2.14

Trees as Special Cases of Logistic Regression Modelling

69

4.2.15

Other Methods for Binary Outcomes

70

4.2.16

Summary on Binary Outcomes

71

4.3

Categorical Outcomes

71

4.3.1

Polytomous Logistic Regression

72

4.3.2

Example; Histology of Residual Masses

72

4.3.3

Alternative Models

73

4.3.4

Comparison of Modelling Approaches

74

4.4

Ordinal Outcomes

74

4.4.1

Proportional Odds Logistic Regression

75

4.4.2

Alternative: Continuation Ratio Model

77

4.5

Survival Outcomes

77

4.5.1

Cox Proportional Hazards Regression

77

4.5.2

Predicting with Cox

78

4.5.3

Proportionality Assumption

78

4.5.4

Kaplan-Meier Analysis

79

4.5.5

Example: NFI After Treatment of Leprosy

79

4.5.6

Parametric Survival

80

4.5.7

Hxample: Replacement of Risky Heart Valves

80

4.5.8

Summary on Survival Outcomes

81

4.6

Concluding Remarks

81

5

Overfitting and Optimism in Prediction Models

83

5.1

Overfilling and Optimism

83

5.1.1

Example: Surgical Mortality in Oesophageclomy

84

5.1.2

Variability within One Centre

84

5.1.3

Variability between Centres: Noise vs. True Heterogeneity

85

5.1.4

Predicting Mortality by Centre: Shrinkage

87

5.2

Overfitting in Regression Models

87

5.2.1

Model Uncertainty: Testimation

87

5.2.2

Other Biases

89

5.2.3

Overfitting by Parameter Uncertainty

90

5.2.4

Optimism in Model Performance

90

5.2.5

Optimism-Corrected Performance

92

5.3

Bootstrap Resampling

92

5.3.1

Applications of the Bootstrap

93

5.3.2

Bootstrapping for Regression Coefficients

93

5.3.3

Bootstrapping for Optimism Correction

94

5.3.4

Calculation of Optimism-Corrected Performance

95

5.3.5

Example: Stepwise Selection in 429 Patients

96

5.4

Cost of Data Analysis

97

5.4.1

Example: Cost of Data Analysis in a Tree Model

98

5.4.2

Practical Implications

98

5.5

Concluding Remarks

99

6

Choosing Between Alternative Statistical Models

101

6.1

Prediction with Statistical Models

101

6.1.1

Testing of Model Assumptions and Prediction

102

6.1.2

Choosing a Type or Model

102

6.2

Modelling Age-Outcome Relationships

103

6.2.1

Age and Mortality After Acute MI

103

6.2.2

Age and Operative Mortality

103

6.2.3

Age-Outcome Relationships in Other Diseases

106

6.3

Head-to-Head Comparisons

107

6.3.1

StatLog Results

107

6.3.2

GUSTO-1 Modelling Comparisons

108

6.3.3

GUSTO-I Results

109

6.4

Concluding Remarks

110

PART II

DEVELOPING VALID PREDICTION MODELS

 

7

Dealing with Missing Values

113

7.1

Missing Values in Predictors

115

7.1.1

Inefficiency of Complete Case Analysis

116

7.1.2

Interpretation of Analyses with Missing Data

117

7.1.3

Missing Data Mechanisms

117

7.1.4

Summary Points

118

7.2

Regression Coefficients Under MCAR, MAR, and MNAR

118

7.2.1

R Code

120

7.3

Missing Values in Regression Analysis

121

7.3.1

Imputation Principle

121

7.3.2

Simple and More Advanced Single Imputation Methods

122

7.3.3

Multiple Imputation

123

7.4

Defining the Imputation Model

124

7.4.1

Transformations of Variables

125

7.4.2

Imputation Models for SI

125

7.4.3

Summary Points

126

7.5

Simulations of Imputation Under MCAR, MAR, and MNAR

126

7.5.1

Multiple Predictors

127

7.6

Imputation of Missing Outcomes

128

7.7

Guidance to Missing Values in Prediction Research

129

7.7.1

Patterns of Missingness

129

7.7.2

Simple Approaches

130

7.7.3

Maximum Fraction of Missing Values Before Omitting a Predictor

131

7.7.4

Single or Multiple Imputation for Predictor Effects?

131

7.7.5

Single or Multiple Imputation for Predictions?

132

7.7.6

Reporting of Missing Values in Prediction Research

133

7.8

Concluding Remarks

134

7.8.1

Summary Statements

135

7.8.2

Currently Available Software and Challenges

136

8

Case Study on Dealing with Missing Values

139

8.1

Introduction

139

8.1.1

Aim

139

8.1.2

Patient Selection

140

8.1.3

Selection of Potential Predictors

140

8 1.4

Coding and Time Dependency of Predictors

141

8.2

Missing Values in the IMPACT Study

142

8.2.1

Missing Values in Outcome

142

8.2.2

Quantification of Missingness of Predictors

143

8.2.3

Patterns of Missingness

144

8.3

Imputation of Missing Predictor Values

147

8.3.1

Correlations Between Predictors

147

8.3.2

Imputation Model

147

8.3.3

Distributions of Imputed Values

149

8.4

Estimating Adjusted Effects

149

8.4.1

Adjusted Analysis for Complete Predictors: Age and Motor Score

151

8.4.2

Adjusted Analysis for Incomplete Predictors: Pupils

154

8.5

Multivariable Analyses

155

8.6

Concluding Remarks

155

9

Coding of Categorical and Continuous Predictors

159

9.1

Categorical Predictors

159

9.1.1

Examples of Categorical Coding

160

9.2

Continuous Predictors

161

9.2.1

Examples of Continuous Predictors

161

9.2.3

Categorization of Continuous Predictors

162

9.3

Non-Linear Functions for Continuous Predictors

163

9.3.1

Polynomials

164

9.3.2

Fractional Polynomials

164

9.3.3

Splines

165

9.3.5

Example: Functional Forms with RCS or FP

166

9.3.5

Extrapolation and Robustness

166

9.4

Outliers and Truncation

167

9.4.1

Example: Glucose Values and Outcome of TBI

168

9.5

Interpretation of Effects of Continuous Predictors

170

9.5.1

Example: Predictor Effects in TBI

171

9.6

Concluding Remarks

172

9.6.1

Software

172

10

Restrictions on Candidate Predictors

175

10.1

Selection Before Studying the Predictor-Outcome Relationship

175

10.1.1

Selection Based on Subject Knowledge

175

10.1.2

Example: Too Many Candidate Predictors

176

10.1.3

Meta-Analysis for Candidate Predictors

176

10.1.4

Example: Predictors in Testicular Cancer

176

10.1.5

Selection Based on Distributions

177

10.2

Combining Similar Variables

177

10.2.1

Example: Coding of Comorbidity

178

10.2.2

Assessing the Equal Weights Assumption

178

10.2.3

Logical Weighting

179

10.2.4

Statistical Combination

180

10.3

Averaging Effects

180

10.3.1

Example: Chlamydia Trachomatis Infection Risks

180

10.3.2

Example: Acute Surgery Risk Relevant for Elective Patients?

180

10.4

Case study: Family History for Prediction of a Genetic Mutation

181

10.4.1

Clinical Background and Patient Data

181

10.4.2

Similarity of Effects

182

10.4.3

CRC and Adenoma in a Proband

184

10.4.4

Age of CRC in Family History

185

10.4.5

Full Prediction Model for Mutations

186

10.5

Concluding Remarks

187

11

Selection of Main Effects

191

11.1

Predictor Selection

191

11.1.1

Reduction Before Modelling

191

11.1.2

Reduction While Modelling

192

11.1.3

Collinearity

192

11.1.4

Parsimony

193

11.1.5

Should Non-Significant Variables Be Removed?

193

11.1.6

Summary Points

194

11.2

Stepwise Selection

194

11.2.1

Stepwise Selection Variants

194

11.2.2

Stopping Rules in Stepwise Selection

195

11.3

Advantages of Stepwise Methods

196

11.4

Disadvantages of Stepwise Methods

197

11.4.1

Instability of selection

197

11.4.2

Biased Estimation of Coefficients

199

11.4.3

Bias of Stepwise Selection and Events Per Variable

199

11.4.4

Misspecifcation of Variability

201

11.4.5

Exaggeration of P-Values

204

11.4.6

Predictions of Worse Quality than from a Full Model

204

11.5

Influence of Noise Variables

205

11.6

Univariate Analyses and Model Specification

206

11.6.1

Pros and Cons of Univariate Pre-Selection

207

11.6.2

Testing of Predictors within Domains

207

11.7

Modern Selection Methods

207

11.7.1

Bootstrapping for Selection

208

11.7.2

Bagging and Boosting

208

11.7.3

Bayesian Model Averaging (BMA)

208

11.7.4

Practical Advantages of BMA

209

11.7.5

Shrinkage of Regression Coefficients to Zero

210

11.8

Concluding Remarks

210

12

Assumptions in Regression Models: Additivity and Linearity

213

12.1

Additivity and Interaction Terms

213

12.1.1

Potential Interaction Terms to Consider

214

12.1.3

Interactions with Treatment

214

12.1.4

Other Potential Interactions

215

12.1.5

Example: Time and Survival After Valve Replacement

216

12.2

Selection, Estimation and Performance with Interaction Terms. .

216

12.2.1

Example: Age Interactions in GUSTO-1

217

12.2.2

Estimation of Interaction Terms

217

12.2.3

Better Prediction with Interaction Terms?

219

12.2.4

Summary Points

220

12.3

Non-linearity in Multivariable Analysis

220

12.3.1

Multivariable Restricted Cubic Splines (RCS)

220

12.3.2

Multivariable Fractional Polynomials (FP)

221

12.3.4

Multivariable Splines in GAM

222

12.4

Example: Non-Linearity in Testicular Cancer Case Study

222

12.4.1

Details of Multivariable FP and GAM Analyses

224

12.4.2

GAM in Univariate and Multivariable Analysis

224

12.4.3

Predictive Performance

226

12.4.4

R code for Non-Linear Modelling

227

12.5

Concluding Remarks

227

12.5.1

Recommendations

228

13

Modern Estimation Methods

231

13.1

Predictions from Regression and Other Models

231

13.2

Shrinkage

232

13.2.1

Uniform Shrinkage

233

13.2.2

Uniform Shrinkage in GUSTO-1

233

13.3

Penalized Estimation

234

13.3.1

Penalized Maximum Likelihood Estimation

234

13.3.2

Penalized ML in Sample4

235

13.3.4

Shrinkage, Penalization, and Model Selection

238

13.4

Lasso

238

13.4.1

Estimation of Lasso Model

238

13.4.2

Lasso in GUSTO-1

239

13.4.3

Predictions after Shrinkage

239

13.4.4

Model Performance after Shrinkage

240

13.5

Concluding Remarks

240

14

Estimation with External Information

243

14.1

Combining Literature and Individual Patient Data

243

14.1.1

Adaptation Method 1

244

14.1.2

Adaptation Method 2

244

14.1.3

Estimation

245

14.1.4

Simulation Results

245

14.1.5

Performance of Adapted Model

247

14.1.6

Improving Calibration

247

14.2

Example: Mortality of Aneurysm Surgery

248

14.2.1

Meta-Analysis

248

14.2.2

Individual Patient Data Analysis

249

14.2.3

Adaptation Results

250

14.3

Alternative Approaches

251

14.3.1

Overall Calibration

251

14.3.2

Bayesian Methods: Using Data Priors to Regression Modelling

251

14.3.3

Example: Predicting Neonatal Death

252

14.3.4

Example: Mortality of Aneurysm Surgery

252

14.4

Concluding Remarks

253

15

Evaluation of Performance

255

15.1

Overall Performance Measures

255

15.1.1

Explained Variation: R2

255

15.1.2

Brier Score

257

15.1.3

Example: Performance of Testicular Cancer Prediction Model

257

15.1.4

Overall Performance Measures in Survival

258

15.1.5

Decomposition in Discrimination and Calibration

259

15.1.6

Summary Points

259

15.2

Discriminative Ability

260

15.2.1

Sensitivity and Specificity of Prediction Models

260

15.2.2

Example: Sensitivity and Specificity of Testicular Cancer Prediction Model

260

15.2.3

ROC Curve

260

15.2.4

R2vs.c

262

15.2.5

Box Plots and Discrimination Slope

264

15.2.6

Lorenz Curve

264

15.2.7

Discrimination in Survival Data

267

15.2.8

Example: Discrimination of Testicular Cancer

 

15.2.9

Prediction Model

268

15.2.10

Verification Bias and Discriminative Ability

269

15.2.11

R Code

269

15.3

Calibration

270

15.3.1

Calibration Plot

270

15.3.2

Calibration in Survival

271

15.3.3

Calibralion-in-the-Large

271

15.3.4

Calibration Slope

272

15.3.5

Estimation of Calibration-in-the-Large and Calibration Slope

272

15.3.6

Other Calibration Measures

273

15.3.7

Calibration Tests

274

15.3.8

Goodness-of-Hl Tests

274

15.3.9

Calibration of Survival Predictions

276

15.3.10

Example: Calibration in Testicular Cancer Prediction Model

276

15.3.11

Calibration and Discrimination

278

15.3.12

R Code

278

15.4

Concluding Remarks

278

15.4.1

Bibliographic Notes

279

16

Clinical Usefulness

281

16.1

Clinical Usefulness

281

16.1.1

Intuitive Approach to the Cutoff

282

16.1.2

Decision-Analytic Approach to the Cutoff

282

16.1.3

Error Rate and Accuracy

283

16.1.4

Accuracy Measures for Clinical Usefulness

284

16.1.5

Decision Curves

284

16.1.6

Examples of NB in Decision Curves

285

16.1.7

Example: Clinical Usefulness of Prediction Model for Testicular Cancer

286

16.1.8

Decision Curves for Testicular Cancer Example

287

16.1.9

Verification Bias and Clinical Usefulness

288

16.1.10

R Code

289

16.2

Discrimination, Calibration, and Clinical Usefulness

289

16.2.1

Aim of the Prediction Model and Performance Measures

290

16.2.2

Summary Points

291

16.3

From Prediction Models to Decision Rules

291

16.3.1

Performance of Decision Rules

292

16.3.2

Treatment Benefit in Prognostic Subgroups

294

16.3.3

Evaluation of Classification Systems

294

16.4

Concluding Remarks

295

16.4.1

Bibliographic notes

296

17

Validation of Prediction Models

299

17.1

Internal vs. External Validation, and Validity

299

17.2

Internal Validation Techniques

300

17.2.1

Apparent Validation

300

17.2.2

Split-Sample Validation

301

17.2.3

Cross-Validation

302

17.2.4

Bootstrap Validation

303

17.3

External Validation Studies

304

17.3.1

Temporal Validation

305

17.3.2

Example: Development and Validation of a Model for Lynch Syndrome

306

17.3.3

Geographic Validation

307

17.3.4

Fully Independent Validation

308

17.3.5

Reasons for Poor Validation

309

17.4

Concluding Remarks

310

18

Presentation Formats

313

18.1

Prediction vs. Decision Rules

313

18.2

Clinical Prediction Models

315

18.2.1

Regression Formula

315

18.2.2

Confidence Intervals for Predictions

316

18.2.3

Nomograms

317

18.2.4

Score Chart

319

18.2.5

Tables with Predictions

320

18.2.6

Specific Formats

321

18.3

Case Study: Clinical Prediction Model for Testicular Cancer Model

321

18.3.1

Regression Formula from Logistic Model

321

18.3.2

Nomogram

324

18.3.3

Score Chart

324

18.3.4

Coding with Categorization

327

18.3.5

Summary Points

327

18.4

Clinical Decision Rules

328

18.4.1

Regression Tree

328

18.4.2

Score Chart Rule

328

18.4.3

Survival Groups

329

18.4.4

Meta-Model

329

18.5

Concluding Remarks

330

PART III

GENERALIZABILITY OF PREDICTION MODELS

 

19

Patterns of External Validity

333

19.1

Determinants of External Validity

335

19.1.1

Case-Mix

335

19.1.2

Differences in Case-Mix

336

19.1.3

Differences in Regression Coefficients

336

19.2

Impact on Calibration, Discrimination, and Clinical Usefulness

337

19.2.1

Simulation Set-Up

338

19.2.2

Performance Measures

339

19.3

Distribution of Predictors

340

19.3.1

More- or Less-Severe Case-Mix According to X

340

19.3.2

Example: Interpretation of Testicular Cancer Validation

341

19.3.3

More or Less Heterogeneous Case-Mix According to X

341

19.3.4

More- or Less-Severe Case-Mix According to Z

342

19.3.5

More or Less Heterogeneous Case-Mix According to Z

344

19.4

Distribution of Observed Outcomes Y

344

19.5

Coefficients β

345

19.5.1

Coefficient of Linear Predictor < 1

345

19.5.2

Coefficients Different

346

19.5.3

R Code

346

19.5.4

Influence of Different Coefficients

347

19.5.5

Other Scenarios of Invalidity

348

19.5.6

Summary of Patterns of Invalidity

348

19.6

Reference Values for Performance

349

19.6.1

Calculation of Reference Values

349

19.6.2

R Code

350

19.6.3

Performance with Refitting

350

19.6.4

Examples: Testicular Cancer and TB1

351

19.7

Estimation of Performance

352

19.7.1

Uncertainty in Validation of Performance

352

19.7.2

Estimating Standard Errors in Validation Studies

354

19.7.3

Summary Points

354

19.8

Design of External Validation Studies

355

19.8.1

Power of External Validation Studies

355

19.8.2

Required Sample Sizes for Validation Studies

356

19.8.3

Summary Points

357

19.9

Concluding Remarks

358

20

Updating for a New Setting

361

20.1

Updating the Intercept

361

20.1.1

Simple Updating Methods

362

20.1.2

Bayesian Updating

362

20.2

Approaches to More-Extensive Updating

363

20.2.1

A comparison of Eight Updating Methods

364

20.3

Case Study: Validation and Updating in GUSTO-I

366

20.3.1

Validity of TIMI-II Model for GUSTO-I

366

20.3.2

Updating the TIMI-II Model for GUSTO-I

368

20.3.3

Performance of Updated Models

369

20.3.4

R Code for Updating Methods

370

20.4

Shrinkage and Updating

371

20.4.1

Example: Shrinkage towards Re-calibrated Values in GUSTO-I

371

20.4.2

R code for Shrinkage and Penalization in Updating....

372

20.5

Sample Size and Updating Strategy

373

20.5.1

Simulations of Sample Size, Shrinkage, and Updating Strategy

374

20.6

Validation and Updating of Tree Models

376

20.6.1

Example: Tree Modelling in Testicular Cancer

377

20.7

Validation and Updating of Survival Models

378

20.7.1

Case Study: Validation of a Simple Indexfor Non-Hodgkin’s Lymphoma

379

20.7.2

Updating the Prognostic Index

380

20.7.3

Re-calibration for Groups by Time Points

380

20.7.4

Re-calibration with a Cox Regression Model

381

20.7.5

Parametric Re-calibration

382

20.7.6

Summary Points

384

20.8

Continuous Updating

384

20.8.1

A Continuous Updating Strategy

385

20.8.2

Example: Continuous Updating in GUSTO-I

386

20.9

Concluding Remarks

388

21

Updating for Multiple Settings

391

21.1.1

Differences Between Settings

391

21.1.2

Testing for Calibration-in-the Large

391

21.1.3

Illustration of Heterogeneity in GUSTO-I

392

21.1.4

Updating for Better Calibration-in-the Large

393

21.1.5

Empirical Bayes Estimates

394

21.1.6

Illustration of Updating in GUSTO-I

394

21.1.7

Testing and Updating of Predictor Effects

396

21.1.8

Heterogeneity of Predictor Effects in GUSTO-I

396

21.19

R Code for Random Effect Analyses

397

21.2

Provider Profiling

398

21.2.1

Indicators for Differences Between Centres

398

21.2.2

Ranking of Centres

399

21.2.3

Example: Provider Profiling in Stroke

401

21.2.4

Testing of Differences Between Centres

401

21.2.5

Estimation of Differences Between Centres

402

21.2.6

Uncertainty in Differences

403

21.2.7

Ranking of Centres

404

21.2.8

Essential R Code for Provider Profiling

405

21.2.9

Guidelines for Provider Profiling

406

21.3

Concluding Remarks

406

21.3.1

Bibliographic Notes

407

PART IV

APPLICATIONS

 

22

Prediction of a Binary Outcome: 30-Day Mortality After Acute Myocardial Infarction

411

22.1

GUSTO-I Study

411

22.1.1

Acute Myocardial Infarction

411

22.1.2

Treatment Results from GUSTO-I

412

22.1.3

Prognostic Modelling in GUSTO-I

412

22.2

General Considerations of Model Development

415

22.2.1

Research Question and Intended Application

415

22.2.2

Outcome and Predictors

416

22.2.3

Study Design and Analysis

416

22.3

Seven Modelling Steps in GUSTO-I

417

22.3.1

Data Inspection

417

22.3.2

Coding of Predictors

418

22.3.3

Mode! Specification

418

22.3.4

Mode! Estimation

418

22.3.5

Model Performance

419

22.3.6

Model Validation

419

22.3.7

Presentation

420

22.4

Validity

421

22.4.1

Internal Validity: Overfitting

421

22.4.2

External Validity: Gcneralizability

421

22.4.3

Summary Points

421

22.5

Translation into Clinical Practice

422

22.5.1

Score Chart for Choosing Thrombolytic Therapy

422

22.5.2

Predictions for Choosing Thrombolytic Therapy

423

22.5.3

Covariate Adjustment in GUSTO-I

424

22.6

Concluding Remarks

425

23

Case Study on Survival Analysis: Prediction of Secondary Cardiovascular Events

427

23.1

Prognosis in the SMART Study

427

23.1.1

Patients in SMART

428

23.2

General Considerations in SMART

429

23.2.1

Research Question and Intended Application

429

23.2.2

Outcome and Predictors

429

23.2.3

Study Design and Analysis

432

23.3

Data Inspection Steps in the SMART Cohort

432

23.4

Coding of Predictors

435

23.4.1

Extreme Values

435

23.4.2

Transforming Continuous Predictors

436

23.4.3

Combining Predictors with Similar Effects

437

23.5

Model Specification

438

23.5.1

Selection

440

23.6

Model Estimation, Performance, Validation, and Presentation

440

23.6.1

Model Estimation

440

23.6.2

Model Performance

442

23.6.3

Model Validation: Stability

442

23.6.4

Model Validation: Optimism

444

23.6.5

Model Presentation

444

23.7

Concluding Remarks

444

24

Lessons from Case Studies

447

24.1

Sample Size

447

24.1.1

Example: Sample Size and Number of Predictors

447

24.1.2

Number of Predictors

448

24.1.3

Potential Solutions

449

24.2

Validation

450

24.2.1

Examples of Internal and External Validation

450

24.3

Subject Matter Knowledge

451

24.4

Data Seta

452

24.4.1

GUSTO-I Prediction Models

453

24.4.2

Modern Learning Methods in GUSTO-I

453

24.4.3

Modelling Strategies in Small Data Sets from GUSTO-I

453

24.4.4

SMART Case Study

453

24.4.5

Testicular Cancer Case Study

455

24.4.6

Abdominal Aortic Aneurysm Case Study

455

24.4.7

Traumatic Brain Injury Data Set

459

24.5

Concluding Remarks

459

 

References

463

 

Index

487